四轴运动控制器

CM20L-40

北京时代超群电器科技有限公司

录目

1.	安全须知	1
	工作环境及防护	1
	系统的操作	1
	系统的检修	
	系统保修说明	
_ l:	其它事项	
2.1	冠述	
	2.1 主要功能	2
	2.2 系统组成	2
	2.3 技术指标	2
	2.4 外观及面板	3
3 ₺	操作说明	
J. D	3.1 开机画面	
	3.2 手动	
	3.3 自动	
	3.4 程序管理	
	3.4.1 屏幕显示说明	
	3.4.2 编辑状态下操作按键说明	
	3.4.4 程序的读入	
	3.4.5 程序的删除	
	3.4.6 程序管理的说明	
	3.5 参数设置	
	3.5.1 系统参数	
	3.5.2 系统自检	
	3.6 I/O 设置	
	3.6.2 输出设置	
13		
4. <i>5</i>		
	4.1 编程概念/符号说明	
	4.1.1 相关概念	
	4.1.2 程序字及约定	
	4.2 指令	
	4.2.1 程序结束	
	4.2.2 绝对运动	
	4. 2. 3 增重运动	
	4.2.5 顺圆插补	
	4.2.6 逆圆插补	
	4. 2. 7 延时等待	
	4.2.8 绝对跳转	
	4.2.9 程序循环	
	4. 2. 10 测位跳转	
	4. 2. 11 坐标设置	
	4. 2. 12 输出状态	14
	4. 2. 13 回机械零	14
	4.2.14 子程序	14
	4.2.15 测位运动	15
	4.2.16 设随动轴	
	4.2.17 中断操作	
	4. 2. 18 几点说明	
	4.2.19 指令中文、英文、GM 代码对照表	
	4.3 选择示教	
	4.4 示教编程	17

5.系统连接	
5.2 电机联接	
5.4 系统电气接线图	
6. 常见故障及排除	21
6.1 手动时无运动	
6.2 运动距离有误差	
6.3 输入/输出无效	
6.5 系统功能声明	
附录 1: 控制器使用厂家、或最终用户	

1. 安全须知

★★ 在使用本控制系统前,请您仔细阅读本手册后再进行相关的操作。

仔细阅读本操作说明书,以及用户安全须知,采取必要的安全防护措施。如果用户有其他需求,请 与本公司联系。

工作环境及防护

- 1. 控制系统的工作环境温度为 0-40℃,当超出此环境温度时系统可能会出现工作不正常甚至死机等现象。温度过低(零下)时,液晶显示器将会出现不正常显示的情况。
 - 2. 相对湿度应控制在 0-85%。
 - 3. 在高温、高湿、腐蚀性气体的环境下工作时,必须采取特殊的防护措施。
 - 4. 防止灰尘、粉尘、金属粉尘等杂物进入控制系统。
- 5. 应防护好控制系统的液晶屏幕(易碎品): 使其远离尖锐物体; 防止空中的物体撞到屏幕上; 当屏幕有灰尘需要清洁时,应用柔软的纸巾或棉布轻轻擦除。

系统的操作

系统操作时需按压相应的操作按键,在按压按键时,需用食指或中指的手指肚按压,切忌用指甲按 压按键,否则将造成按键面膜的损坏,而影响您的使用。

初次进行操作的操作者,应在了解相应功能的正确使用方法后,方可进行相应的操作,对于不熟悉的功能或参数,严禁随意操作或更改系统参数。

对于使用操作中的问题,将提供电话咨询服务。

系统的检修

当系统出现不正常的情况,需检修相应的联接线或插座连接处时,应先切断系统电源。再进行必要的检修。

未进行严格培训的操作人员或未得到本公司授权的单位或个人,不能打开控制系统进行维修操作,否则后果自负。

系统保修说明

保修期:本产品自出厂之日起十二个月内。

保修范围: 在保修期内, 任何按使用要求操作的情况下所发生的故障。

保修期内,保修范围以外的故障为收费服务。

保修期外, 所有的故障维修均为收费服务。

以下情况不在保修范围内:

任何违反使用要求的人为故障或意外故障;

带电插拔系统联接插座而造成的损坏;

自然灾害等原因导致的损坏;

未经许可,擅自拆卸、改装、修理等行为造成的损坏。

其它事项

本说明书如有与系统功能不符、不详尽处,以系统软件功能为准。

控制系统功能改变或完善(升级), 恕不另行通知。

2. 概述

本公司最新研制的"运动控制器"采用高性能 32 位 Cpu,驱动装置采用细分步进电机或交流伺服电机,配备液晶显示器,全封闭触摸式操作键盘。该系统具有可靠性高,精度高,噪音小,操作方便等特点。

本控制器可控制四个电机运动,可实现点位、直线、圆弧插补的操作。具有循环、跳转、子程序、中断、随动、测位等功能。支持中文、英文,文字指令、GM代码。简单、清晰的参数给您的操作带来方便和快捷。输入/输出的设置功能可方便您的使用和维修。

2.1 主要功能

参数设置:可设置与加工、操作有关的各个控制参数,使加工效果达到最佳状态。

手动操作:可实现高、低速手动、点动、回程序零、回机械零等操作。

程序管理: 可对当前加工程序进行修改、保存。

自动加工:可实现单段/连续、空运行、暂停等功能。

示教编程: 可使用示教编程或选择示教

外部手动: 可定义多种外部手动功能, 以方便使用

自由选择输入功能: 使有限输入口可实现各种用户需求

指令丰富: 17条多功能指令,能满足您的各种功能需要

快速点位: 名轴可以最高速度分动, 以提高效率

子程序: 子程序调用, 可嵌套 8 层

中断: 由外部信号中断当前的运动转入中断处理

随动: 各轴运动的过程中, 随动轴可根据输入点的状态运动

测位停: 遇输入点有效后中止当前程序行的执行

2.2 系统组成

数控系统主要由以下几部分组成:

- 高性能、高速度 32 位
- 液晶显示器(分辨率:192×64)
- 专用运动控制芯片(信号输出为:5V TTL)
- 输入/输出(10 路光电隔离 24V 输入, 10 路光电隔离 24V 输出)
- 用户加工程序存储器(可存储 48 个程序)
- 最大程序行数 420 行
- 薄膜按键阵列(28 键)

2.3 技术指标

● 最小数据单位 0.001mm

● 最大数据尺寸 ±9999.999mm

● 快速点位运动限速 8000mm/min (脉冲当量为 0.001 毫米时)

● 最高加工速度限速 8000mm/min(脉冲当量为 0.001 毫米时)

● 最高脉冲输出频率 150KHz

● 控制轴数 4 轴 (X, Y, Z, C)

● 联动轴数 直线 4 轴 (X, Y, Z, C), 圆弧 2 轴 (X, Y)● 电子齿轮 分子 (n):1-65535, 分母 (m):1-65535

● 系统主要功能 自动、手动、程序编辑、系统参数、自检、设置等

2.4 外观及面板

控制器外观: 见首页

外形尺寸: 长172, 宽94, 厚30

嵌入孔尺寸: 长 162, 宽 84, 前面板厚 4

3. 操作说明

3.1 开机画面

控制系统通电后出现如下画面

等待几秒钟后或按下任意键进入如下主画面:

自动执行 X0000.000 Y0000.000 手动操作 Z0000.000 N000 程序管理 C0000.000 程序结束 参数设置 T0000 F000 100%

此时可通过左侧的F功能键选择相应的功能进行各种操作。

3.2 手动

在主画面下按 F2 键进入手动操作状态

手动高速:手动高低速切换,正显时以低速(F1)运动,反显时以高速(Fh)运动。

点动操作:进入点动状态,以设定的数值为步长,按一次运动一次。

回程序零:返回坐标零点 回机械零:返回机械零点

手动方向键: X+:→, X-:←, Y+:↑, Y-:↓, Z+:1, Z-:4, C+:2, C-:5

速度倍率键: 倍率增加:PgUp, 倍率减小:PgDn

当"外手动"有效时,在主画面或手动功能下,外手动钮有效。

3.3 自动

在主画面下按 F1 键或"启动"键或"外启动"钮进入自动加工状态

当"参数设置"中的"系统参数"下的"选项"中的"不执行"选择中时,进入自动主画面,但不执行程序;否则直接启动程序的运行。

空运行: 正显时为正常加工, 反显时为空运行。

单段执行: 正显时为连续运行, 反显时为单段运行。

循环启动:用于开始执行程序或暂停、段停后的继续执行。

运动暂停:用于暂停程序的的执行。

3.4 程序管理

在主画面下按F3键进入程序管理菜单

程序编辑:进入程序输入与修改状态。

程序读入:读入系统中保存的加工程序。

程序保存:将当前加工程序保存。

程序另存: 将当前程序以新的文件名(不能与已有的程序名重名,否则将覆盖原来和程序)。

新建程序:将当前程序区清除。

程序删除:通过"回车"键删除光标所在的程序文件。

文件接收:接收由上位机发送的程序文件

文件发送:由本控制器向上位机发送程序文件

菜单切换由"F"键实现。

3.4.1 屏幕显示说明

第一行从左至右分别为:

n: 当前行号(0-999), 自动生成的序号, 与编程无关

程序结束:指令名字段,控制指令共有十四个(详见第四章);

L:本行标号, 只有当某跳转将跳到本行时, 需选定一个标号, 取值 1-99, 0 为无标号;

Pn: 当前程序的名称

第二、三、四行将显示的内容为(不同的指令指示不同的数据输入):

X, Y, Z, C:运动指令时的坐标或增量值。

I, J: 圆弧圆心相对起点的坐标。

T:Dely 时为延时值(以 0.1 秒为单位), Loop 时为循环次数(取值 0-9999);

F:运动速度指定,对"直线插补"、"圆弧插补"有效;

P:输入口、输出态、轴选择的指定,输入取值 1-10,输出取值 0-9,轴选取值 0-3;

N:跳转指令时目的标号的指定,即需跳到的位置标号,取值 1-99

S:输入口、输出态、轴方向时的状态,取值0或1

3.4.2 编辑状态下操作按键说明

- ←: 向前移动光标, 当移到本字段的最高位时, 再按则不起作用, 自动跳过小数点
- →:向后移动光标, 当移到本字段的最低位时, 再按则不起作用, 自动跳过小数点
- ↑:向前移动字段、光标在指令字段时,再按则进入前一程序段
- ↓:向后移动字段,光标在最后一个字段时,再按则进入后一程序段

F1: 当光标处于数字输入位置时, 数字加一, 加过 9 时自动进位; 当光标处于符号位时, 则 "-"和空交替, 当光标处于指令字段, 循环向前选择不同的指令。

F2: 当光标处于数字输入位置时, 数字减一, 减到 0 时自动借位; 当光标处于符号位时, 则 "-"和空

交替,当光标处于指令字段,循环向后选择不同的指令。

F3:在当前程序行位置插入一个结束行(End)

F4: 将当前程序行删除

PgUp:向前翻一个程序行 PgDn:向后翻一个程序行

3.4.4 程序的读入

进入此功能后,屏幕显示 48 个用户程序名,可通过上、下、左、右光标键选择程序名,选择正确后按"回车"键,则读入该程序的内容。

注:显示"---"时为无程序

3.4.5 程序的删除

进入此功能后,屏幕显示 48 个用户程序名,可通过上、下、左、右光标键选择程序名,选择正确后按"回车"键,则该程序被删除。

注:显示"----"时为无程序

3.4.6 程序管理的说明

如果修改有误,可用 Load 重新读入程序而放弃修改。

如果需保存当前的修改,用 Save 功能(存储时间较长,请耐心等待)。

如果进行进行另存,可用不同的文件名,注意与已有文件名重名时则覆盖原程序文件。

3.5 参数设置

在主画面下按 F4 键进入进入参数设置设置菜单

系统参数:进入系统参数设置功能。

系统自检:进入系统自检功能。

I/0 设置:进入 I/0 设置功能。

3.5.1 系统参数

选"系统参数"进入系统参数菜单:

选项:与控制有关的选项选择

系统:与控制有关的系统参数

厂值:恢复出厂值,误用此功能,可以不保存,关电后重新上电。

保存:保存当前参数的参数

1. 选顶

X 正限: X 正向限位禁止或有效。 X 负限: X 负向限位禁止或有效。 Y 正限: Y 正向限位禁止或有效。 Y 负限: Y 负向限位禁止或有效。 Z 正限: Z 正向限位禁止或有效。 Z 负限: Z 负向限位禁止或有效。 C 正限: C 正向限位禁止或有效。 C 负限: C 负向限位禁止或有效。 报 警:报警信号1禁止或有效。 急 停: 急停输入禁止或有效。 X 零点: X 机械零开关常开或常闭。 Y 零点: Y 机械零开关常开或常闭。 Z 零点: Z 机械零开关常开或常闭。 C 零点: C 机械零开关常开或常闭。 外启动:外部启动钮禁止或有效。 外暂停:外部暂停钮禁止或有效。

速度升:外部升速钮禁止或有效。

速度降:外部降速钮禁止或有效。

GM 代码: 指令代码用 GM 代码形式显示。 不执行: 进入自动画面不立即执行。

Englsh: 进入英文菜单画面。 外手动:外部手动按钮有效。

自动过程中按下急停关闭所有输出。 留坐标: 进入自动时清除或保留当 关输出:

前坐标。 各自动:点位运动时各轴插补或不插补。

用上、下光标键选择待更改的选项,光标随之移动。用回车键切换两个状态。

参数的状态将影响某些功能的执行,一定要和实际相对应。

限位、报警、急停均为常闭开关。机械零点开关可选择常开或常闭。

外操作键(启动、暂停、升速、降速、外手动)均为常开。

2. 系统参数

X 分子: X 电子齿轮分子(取值范围 1-65535) X 分母: X 电子齿轮分母(取值范围 1-65535)

Y 分子:Y 电子齿轮分子(取值范围 1-65535) Y 分母:Y 电子齿轮分母(取值范围 1-65535)

Z 分子: Z 电子齿轮分子(取值范围 1-65535) Z 分母: Y 电子齿轮分母(取值范围 1-65535)

C 分子: C 电子齿轮分子(取值范围 1-65535) C 分母: Y 电子齿轮分母(取值范围 1-65535)

起速: 电机启动速度(单位:毫米/分) 最高: 电机最高速度(单位:毫米/分)

时间: 电机升速时间(单位:毫秒) 点位:最高加工速度(单位:毫米/分)

高速: 手动高速时的速度(单位:毫米/分) 低速: 手动低速时的速度(单位:毫米/分)

增量:点动增量值 零速: 回零返回速度(单位:毫米/分)

X间隙:X轴反向间隙值 Y 间隙: Y 轴反向间隙值 Z 间隙: Z 轴反向间隙值 C 间隙: C 轴反向间隙值 X显比:X轴显示比例值 Y 显比: Y 轴显示比例值

Z 显比: Z 轴显示比例值 C 显比: C 轴显示比例值

● 电子齿轮的设定

分子、分母分别表示 X、Y、Z、C 轴的电子齿轮的分子、分母。此数值的取值范围为 1-65535 电子齿轮分子,分母的确定方法:

电机单向转动一周所移动的距离(以微米为单位)

将其化简为最简分数,并使分子和分母均为 1-65535 的整数。当有无穷小数时(如: п),可分 子、分母同乘以相同数(用计算器多次试乘并记住所乘的总值,确定后重新计算以消除计算误差), 以使分子或分母略掉的小数影响最小。但分子和分母均应为 1-65535 的整数。

例 1: 丝杠传动: 步进电机驱动器细分为一转 5000 步,或伺服驱动器每转 5000 脉冲,丝杠导程 为6毫米,减速比为1:1,即1.0

$$\frac{5000}{6 \times 1000 \times 1.0} \Longrightarrow \frac{5}{6}$$

即:分子为5,分母为6。

例 2:齿轮齿条: 步进电机驱动器细分为一转 6000 步,或伺服驱动器每转 6000 脉冲,齿轮齿数 20, 模数 2。

则齿轮转一周齿条运动 20×2×π。

$$\stackrel{6000}{\Longrightarrow} \qquad \stackrel{1}{\Longrightarrow} \qquad \stackrel{107}{\Longrightarrow} \qquad \stackrel{107}{\Longrightarrow}$$

 $20 \times 2 \times 3.14159265358979 \times 1000$

20. 943951 2241. 00276

2241

即:分子为107,分母为2241,误差为2241毫米内差3微米(注意: π应足够精确)。

使用电子齿轮时的注意事项

1. 如果使用交流伺服,尽量将控制器的电子齿轮设置为1,而改变伺服驱动器的电子齿轮设置。

- 2. 电子齿轮比(分子与分母的比)应尽量≤1,当电子齿轮比为1时最高速度可达9米/分,当电子齿轮比为2时最高速度可达4.5米/分,当电子齿轮为0.5时最高速度为18米/分。此为系统的理论速度,且受机械、电机功率、电机速度等因素的影响。
- 3. 电子齿轮的分子、分母均不能为零、负数或小数。
- 4. 电子齿轮可对丝杠、齿条的线性误差进行线性的补偿。
- 5. 系统的电子齿轮可与步进驱动器的细分数、伺服电机的电子齿轮结合在一起修改。从而保证电子齿轮的比不超过1。总之,系统以设定的最高速运行时,其输出的最高频率应<150KHz。否则将出现不准确的现象。
- 6. 当使用步进电机,且电子齿轮比为1:1时,系统运动过程中的振动、噪音将降低,否则有可能出现一定的振动或噪音

电子齿轮比的倒数为脉冲当量——即系统发出一个脉, 机械实际运动的距离(单位为微米)。

● 升降速曲线的设定

启动速度(起速): 电机启动的起始速度(单位:毫米/分,最小60);

极限速度(最高): 电机需达到的最高速度(单位:毫米/分,最大9000);

升速时间(时间): 启动速度到极限速度所需时间(单位:ms,最大1000);

说明:启动速度、极限速度、升速时间与升降速曲线有关,本系统根据上述的三个参数,自动计算产生一条 S 形曲线。实际升降速曲线的参数设置与所用电机种类及厂家、电机的最高转速、电机的启动频率、机械传动的传动比、机械的重量、机械的惯量、反向间隙的大小、机械传动阻力、电机轴与丝杠轴的同轴度、传动过程中的功率损失、驱动器的输出功率、驱动器的状态设置等有关,注意设置要合理,否则将出现以下现象:

丢步: 启动速度过高/升速时间过短/极限速度过高

堵转: 启动速度过高/升速时间过短/极限速度过高

振动: 启动速度过高/升速时间过短

缓慢: 启动速度过低/升速时间过长

当使用步进电机时,升降速曲线应以不堵转、不丢步为基准,通过改变启动速度、极限速度、升速时间,使运动过程达到理想状态(极限速度较高、升速时间较短),但应预留一定的安全量,以免由于长期使用而引起的机械阻力增加、电机扭矩下降、偶然阻力等原因而造成堵转、丢步等现象。

当使用伺服电机时,升降速速曲线应以高效、无过冲为基准,通过改变启动速度、极限速度、升速时间,使用运动过程达到理想状态。

● 最高速度的确定

当使用步进电机时,最高速度应≤极限速度,如果最大实际加工速度远远小于极限速度,可将此值设为最高速度。

当使用伺服电机时,最高速度应<极限速度,即极限速度减去3%左右。

● 手动高速、低速的确定

手动高速、低速是手动高速度的两个基本速度。

当使用步进电机时,手动高速应≤极限速度。

当使用伺服电机时,最高速度应<极限速度,即极限速度减去3%左右。

手动低速一般用于对刀,定位时使用,可根据需要自行确定。

● 反向间隙

运动换向时,由于丝杠间隙、传动链间隙、接触刚性、弹性变性等原因,而出现反向间隙(反向时的前一段无实际运动)。一般应实测后确定。本系统采用渐补法,即运动过程中无停顿(单独走反向间隙)现象。

空载和大负载下的反向间隙有区别。

反向间隙值不能为负值。

由于切削力的原因(切削力大于工作台的磨擦力时),加入间隙补偿可能会加大加工误差,最理想的处理方法是:通过机械方法消除反向间隙,提高机械刚度。

3. 恢复厂值

选择此功能后,系统参数恢复出厂时的设置,如果误操作了此功能,则可使系统重新上电,参数仍为原设置的参数。

4. 保存参数

当确定需长期保存对参数所作的修改时,选择此功能后将保存修改后的参数,不能恢复。

注: 在更改参数前应记忆下所有的参数值,以备误操作时的恢复。

3.5.2 系统自检

当系统出现故障时,可利用此功能进行必要的测试。进入此功能后自动进入输入口状态的测试。 输入口测试

1. 输入测试

数字序号 01-10 分别对应于输入口 1-10,当对应输入口信号线与 24V 地短接时,对应的指示灯变为●,否则为○。通过此操作可以测试输入信号是否正常。

为提高输入信号的可靠性,系统具有干扰过滤功能,信号需保持2毫秒以上。

当没有变化时,可能为如下情况:

24V 电源工作不正常

该输入信号线联接不正常

该路输入信号电路出现故障

2. 设入测试

当对应输入口信号线与 24V 地短接时,对应的指示灯变为●, 否则为〇。通过此操作可以测试对应输入信号是否正常。

当没有变化时,可能为如下情况:

设置输入点有误(见设置功能)

该输入信号不正常(见输入口测试)

X 正限: X 轴正向限位

X 负限: X 轴负向限位

Y 正限: Y 轴正向限位

Y负限:Y轴负向限位

Z 正限: Z 轴正向限位

Z 负限: Z 轴负向限位

C 正限: C 轴正向限位

C 负限: C 轴负向限位

报 警:报警或保护信号

X 零点: X 轴的机械零点开关

Z 零点: Z 轴的机械零点开关

外启动:外接的启动按钮

速度升:外接的速度倍率升按钮

外部 X+: 外接的 X 轴正向运动钮

外部 Y+: 外接的 Y 轴正向运动钮

外部 Z+: 外接的 Z 轴正向运动钮

外部 C+: 外接的 C 轴正向运动钮

外程零:外接的回程序(坐标)零钮

外高速:外接的高低速运动开关

3. 输出测试

数字序号 01-10 分别对应于输出口 1-10。

通过上、下标键改变所选择的输出点,光标随之移动。按回车键,对应指示灯由○变为●,或由● 变为〇。同时对应的输出将由断开变为闭合,或由闭合变为断开。

当没有变化时,可能为如下情况:

24V 电源工作不正常

该输出信号线联接不正常

对应继电器不能正常动作

该路输出信号电路出现故障

4. 设出测试

通过上、下标键改变所选择的输出点,光标随之移动。按回车键,对应指示灯由○变为●,或由● 变为〇。同时对应的输出将由断开变为闭合,或由闭合变为断开。

当没有变化时,可能为如下情况:

设置输出点有误(见设置功能)

该输出信号不正常(见输出口测试)

3.6 1/0设置

为避免误操作, 无关人员不得修改此参数。

3.6.1 输入设置

设置对应输入功能所使用的输入口号。

通过上、下光标键移动光标, 光标随之移动。

键入对应输入功能的输入口号,取值范围为1-10。当输入值为0时,关闭此输入功能。

当输入口有硬件故障时,可选择未用的输入口实现此输入功能,而避开此出现故障的输入口。

注:可以对不同的输入功能选择同一输入口,但应注意功能的干涉。

数值不能为负或大于10

3.6.2 输出设置

设置对应输出功能所使用的输出口号。

急 停:系统紧急停止

Y 零点: Y 轴的机械零点开关

C 零点: C 轴的机械零点开关

外暂停:外接的暂停按钮

速度降:外接的速度降按钮

外部 X-: 外接的 X 轴负向运动钮

外部 Y-: 外接的 Y 轴负向运动钮

外部 Z-: 外接的 Z 轴负向运动钮

外部 C-: 外接的 C 轴负向运动钮

外机零:外接的回机械零钮,按 xyzc 顺序

外点动:外接的点动/连续选择开关

通过上、下光标键移动光标, 光标随之移动。

键入对应输出功能的输出口号,取值范围为1-10。当输入值为0时,关闭此输出功能。

当输出口有硬件故障时,可选择未用的输出口实现此输出功能,而避开此出现故障的输出口。

注:不能对不同的输出功能选择同一输出口数值不能为负或大于10

4. 系统指令及编程

4.1 编程概念/符号说明

4.1.1 相关概念

- 1. 进给功能:用指定的速度使刀具运动切削工件称为进给,进给速度用数值指定。例:让刀具以 150毫米/分的速度切削,指令为: **F150**。此值为模态,后续有效。
- 2. 程序和指令:数控加工每一步动作,都是按规定程序进行的,每一个加工程序段由若干个**程序字** 组成,每个程序字必须由字母开头,后跟具体参数值(无空格)。
- 3. 反向间隙:指某一轴改变方向时所引起的空程误差。其大小与丝杠螺母间隙、传动链的间隙、机床的刚性等有关。使用时应设法从机械上消除此间隙,否则既使设置了此参数,在某些条件下,还会造成加工不理想。
- 4. 速度倍率:对当前设定的F速度进行改变,即乘以速度倍率。一般在调试过程中试验最佳的加工速度,试验完成后应将相应的F速度改为实际的最佳速度,即正常加工时,速度倍率处于100%位置。
- 5. 行号和标号: 标号和行号(自动产生的)不同,当跳转或循环时,需给定跳转到的目的标号(非行号),相应的入口处应给定标号,且与跳转指令后的目的标号相同。行号是自动产生的序列号,标号是特指的程序行,且只有跳转入口处需指定标号,非入口程序段不需指定标号(00)。标号的取值范围 1-99。

不同行的标号不能相同(00 除外)。

4.1.2 程序字及约定

- X X 轴增量/绝对坐标
- Y 知增量/绝对坐标
- Z Z 轴增量/绝对坐标
- C C 轴增量/绝对坐标
- T 循环次数或延迟时间
- L 给出当前程序行的标号(每个跳转入口处都需给定,当为0时为无标号)
- F 指定进给速度
- P 输入口、输出态、轴选指定
- S 输入、输出态、轴方向状态指定
- N 给定跳转到的目的标号,或特定编号

4.2 指令

为便于使用,本控制器采用汉字命令选择方式,通过加一(F1)键、减一(F2)键循环选择操作指令。

为避免程序字符号的输入,各指令采用固定程序格式,提示输入相应的程序数据。对于不输入的数据可不修改(使用默认数据)。本系统最大程序行数 450 行。

4.2.1 程序结束

结束程序的执行。当出现不识别的指令亦当作"程序结束"指令。

参数:无

4.2.2 绝对运动

本指令可实现快速直线插补到指定位置。当有位移时,系统以**最高速度×速度倍率**从当前点运动到 所给的绝对坐标位置。

此运动受速度倍率的影响,但与当前 F 速度无关。

参数: X(X) 向绝对坐标),Y(Y) 向绝对坐标),Z(Z) 向绝对坐标),Z(C) 向绝对坐标),Z(C) 向绝对坐标),Z(C) 向绝对坐标),Z(C) 的指令指定速度,亦可为 0)

P、S: P参数(非 0)选择的输入口状态为 S(0/1) 时等待

当选中"参数设置"的"系统"中"选项"下的"各自动"时各轴均按最高速度运动,先到先停,全到后进入下一条程序。否则按多轴直线插补方式运动,与直线插补的区别:按最高速度(与当前速度无关)运动。

4.2.3 增量运动

本指令可实现快速直线插补到指定位置。当有位移时,系统以**最高速度×速度倍率**从当前点运动所给的增量值。

此运动受速度倍率的影响,但与当前F速度无关。

参数: X(X) 向运动增量),Y(Y) 向运动增量),Z(Z) 向运动增量),C(C) 向运动增量),F(G) 的指令指定速度,亦可为 0)

P、S: P参数(非 0)选择的输入口状态为 S(0/1) 时等待

当选中"参数设置"的"系统"中"选项"下的"各自动"时各轴均按最高速度运动,先到先停,全到后进入下一条程序。否则按多轴直线插补方式运动,与直线插补的区别:按最高速度(与当前速度无关)运动。

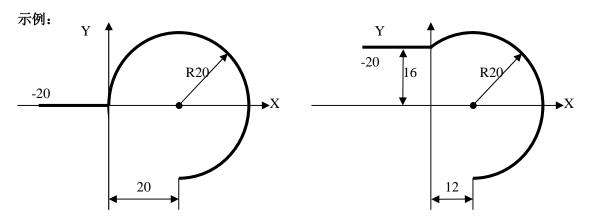
4.2.4 直线插补

沿直线以F速度×速度倍率运动给定的增量值。

此运动受速度倍率的影响,且与当前F速度有关。

参数: X(X 向运动增量), Y(Y 向运动增量), Z(Z 向运动增量), C(C 向运动增量), F(运动速度) P、S: P 参数(非 0)选择的输入口状态为 S(0/1) 时等待

当 P 为 0, S 为 1 时,执行无限运动。所给坐标与运动终点无关,仅设置各轴运动比例关系。运动过程中支持"暂停"和暂停后的启动、退出等操作。


4.2.5 顺圆插补

沿顺圆方向以F速度×速度倍率运动给定的增量值。只有 X、Y 轴实现圆弧插补。

此运动受速度倍率的影响,且与当前F速度有关。

参数: X(X 向运动增量),Y(Y 向运动增量),I(X 相对于圆心的增量),J(Y 相对于圆心的增量),F(运动速度)

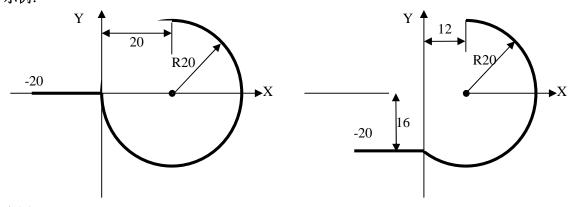
P、S: P参数(非 0)选择的输入口状态为 S(0/1) 时等待

左图: Line X20.000 Y0

Sarc X20.000 Y-20.000 I20.000 J0

右图: Line X20.000 Y0

Sarc X12.000 Y-36.000 I12.000 J-16.000


4.2.6 逆圆插补

沿逆圆方向以F速度**×速度倍率**运动给定的增量值。只有 X、Y 轴实现圆弧插补。 此运动受速度倍率的影响,且与当前 F 速度有关。

参数: X(X 向运动增量),Y(Y 向运动增量),I(X 相对于圆心的增量),J(Y 相对于圆心的增量),F(运动速度)

P、S: P参数(非 0)选择的输入口状态为 S(0/1) 时等待

示例:

左图: Line X20.000 Y0

Narc X20.000 Y20.000 I20.000 J0

右图: Line X20.000 Y0

Narc X12.000 Y36.000 I12.000 J16.000

4.2.7 延时等待

延时相应时间。时间单位 0.1 秒。

参数: T(延时的时间×100毫秒), 当为0时执行暂停功能, 暂停后按"启动"继续。

取值范围: T(0-9999)

4.2.8 绝对跳转

跳转到指定的标号处。

参数: N(目的标号)

取值范围: N(1-99)

4.2.9 程序循环

转移到指定的标号外执行,并执行 n 次。

参数: T(循环次数), N(目的标号)

取值范围: T(1-9999), N(1-99)

4.2.10 测位跳转

测试指定的输入点的状态,符合条件跳转,否则结束本行,继续执行下一程序行。

参数: P(输入口号), S(输入状态), N(目的标号)

取值范围: P(1-12), S(0,1), N(1-99)

4.2.11 坐标设置

设置当前坐标值。

参数: X(X 向绝对坐标), Y(Y 向绝对坐标), Z(Z 向绝对坐标), C(C 向绝对坐标)

4.2.12 输出状态

设置输出口的状态。

参数: P(输出口号), S(输出状态)

取值范围: P(0-9), S(0,1)

4.2.13 回机械零

使某运动轴回到机械零点。

参数: P(运动轴的选择), S(回零的方向)

取值范围: P(0-3), S(0,1)

0-3: 分别代表 X、Y、Z、C。

4.2.14 子程序

子程序调用: 进入、设置、返回。

参数: N(子程序号), P(功能选择)

取值范围: N(1-99), P(0,1,2)

P为0: 子程序调用指令, 进入到N 指定的子程序号

P为1: 子程序定义指令,定义当前子程序的编号为N

P 为 2: 子程序结束返回指令, N 值无意义

4.2.15 测位运动

沿直线以F速度×速度倍率运动给定的缯量值。

此运动受速度倍率的影响,且与当前 F 速度有关。

参数: X(X 向运动增量), Y(Y 向运动增量), Z(Z 向运动增量), C(C 向运动增量), F(运动速度) P、S: P 参数(非 0)选择的输入口状态为 S(0/1) 时提前结束, 剩余运动量忽略 有两个结束条件:运动到终点或在运动过程中相应输入点有效。

4.2.16 设随动轴

设置某轴的某方向轴输入点控制运动

参数: N(轴和方向的编码), F(运动速度), P(输入口号), S(输入口状态)

X 轴正(0)、X 轴负(1)、Y 轴正(2)、Y 轴负(3)、Z 轴正(4)、Z 轴负(5)、C 轴正(6)、C 轴负(7) F 速度不能过高(不执行升降速度),如果确实需要较高的速度,应采用伺服电机

S为0或1时为输入口的有效状态。

当对应的输入口有效时,对应的轴按设定的方向运动,无效即停。

设置为随动轴的在编程中的对应数据无效。正向或负向设置过一个,则该轴即为随动轴。

最多可设置4个随动控制点。

4.2.17 中断操作

设置由输入口的状态变化引起的中断(暂停当前的运动,转入中断程序)入口,或由中断返回断点后继续。

参数: N(中断入口标号), P(输入口号), S(输入口状态/子功能)

当对应的输入口有效时,结束当前的运动(暂停),转入其指定标号的入口程序执行,当遇到返回时结束中断,返回中断点。

- N: 中断入口标号,同时也是区别不同中断的标志,不同的中断不能用同一标号。
- P: 指定中断源,输入口号,取值 1-9
- S: 0: 指定输入口 0(断开)有效
 - 1: 指定输入口 1(与 24V 地接通)有效
 - 2: 中断返回,将中断时未完成的运动继续, N,P 无关
 - 3: 中断返回,忽略中断时未完成的运动,并继续, N,P 无关
 - 4: 取消中断, N 为设置时的入口号, P 无关

最多可设置四个中断入口

中断没有优先级,后来的中断能中断当前的程序或当前的中断程序。未执行完的中断(被挂起的中断),再次出现将被忽略。

例如:有两个中断 A 和 B,对应的中断处理程序为 A 程序和 B 程序。

当主程序正在执行时,A中断出现,则转入A程序;在 A程序执行过程中,A中断又出现则被忽略,B中断出现,则转入B程序;在执行 B程序的过程中,A中断又出现,因 A程序未执行完毕,则被 忽略,B中断又出现,因 B程序未执行完毕则被忽略。

当主程序正在执行时,B中断出现,则转入B程序;在B程序执行过程中,B中断又出现则被忽略,A中断出现,则转入A程序;在执行A程序的过程中,A中断又出现,因A程序未执行完毕,则被

忽略, B中断又出现, 因 B程序未执行完毕则被忽略。

4. 2. 18 几点说明

与输入有关的指令,其对应的为输入口号,取值1-9,

与输出有关的指令,其对应的为设出值,取值 0-9

当 X 轴或 Y 轴设为随动轴时,圆弧运动将不执行

在程序中与随动轴有关的数据将被忽略

中断程序应放在主程序后面

子程序应放在主程序后面

子程序中可以再调用子程序,最多嵌套8层

标号不同于行号

为减少指令数量,有些指令是多功能的,请仔细阅读

4.2.19 指令中文、英文、GM 代码对照表

序号	中文名称	英文名称	GM 表示
1	程序结束	Prog End	M02
2	绝对运动	Abs Move	G00.0
3	增量运动	Inc Move	G00.1
4	直线插补	Line	G01
5	顺圆插补	S_Arc	G02
6	逆圆插补	N_Arc	G03
7	延时等待	Delay	G04
8	绝对跳转	Jump	M94
9	程序循环	Loop	M95
10	测位跳转	JumpBit	M96
11	坐标设置	SetCoord	M97
12	输出状态	Output	M98
13	回机械零	MachZero	M99
14	子程序	SubRout	M93
15	测位运动	Move To	G00. 2
16	设随动轴	Follow	M80
17	中断操作	Intermit	M81

4.3 选择示教

在编程的过程中,当选择为"绝对运动"、"增量运动"、"直线插补"指令,按"F"键,进入选择示教功能。

当为"绝对运动"时当前坐标将被复制,"增量运动"或"直线插补"时数据将被清零。

此时可选择"高速"或"低速","点动"或"连续"以控制手动的方式。

按相应的运动控制键,移动到相应的位置(程序的坐标随时改变)。同时程序数据跟随变化。按下"回

车"键则退出选择示教,同时转入下一程序行的输入。 当按"ESC"键时,退出选择示教,光标在当前程序行。

无论"回车"键或"ESC"键,数据均已进入到程序中。

可通过数据输入修改程序的数据。

选择示教功能只在上述三个指令下可用。

4.4 示教编程

在"程序管理"功能下,按"空格"再按"."进入示教编程状态。

可用 "F"键切换功能菜单。

在此功能下支持手动功能,同时具有"点位运动"、"直线插补"、"圆弧插补"、"加工速度"功能。操作方法:

按相应的运动键, 到选择的位置。

如果是点位运动(快速),请按下"点位运动"

如果是直线加工运动(按F速度运动),请按下"直线插补"

如果是圆弧加工运动,请先选择圆弧上的一点(尽量在中间位置),并按下"圆弧中点";再选择圆弧的终点,并按"圆弧终点"

按下"点位运动"、"直线插补"、"圆弧终点"后直接形成一个程序行,并自动转入下一程序行的示教。

全部示教完成后,按 "ESC"退出此功能,可进入程序编辑查看程序内容。

如需要保存,可用保存功能将当前程序存到用户程序区。

5. 系统连接

5.1 接口定义

系统与外部的联接,通过控制器两侧的两个插头实现,注意红线为1。

电机插头(14线)定义

电机插头(14 线)定义		
脚号	定义	
1	模拟输入信号 0	
2	模拟输入信号1	
3	电机信号公共端(5V)	
4	电机信号公共端(5V)	
5	Cdir	
6	Сср	
7	Zdir	
8	Zcp	
9	Ydir	
10	Ycp	
11	Xdir	
12	Хср	
13	485_B	
14	485_A	

电源插头(4 芯)

红色	5V 电源线	
黑色	5V 电源地	
绿色	24V 电源线	
白色	24V 电源地	

输入/输出(20线)定义

脚号	定义			
1	输入1			
2	输入2			
3	输入3			
4	输入4			
5	输入5			
6	输入6			
7	输入7			
8	输入8			
9	输入9			
10	输入 10			
11	输出1			
12	输出 2			
13	输出3			
14	输出 4			
15	输出 5			
16	输出 6			
17	输出7			
18	输出 8			
19	输出9			
20	输出 10			

5.2 电机联接

非差分驱动器接法: dir,cp 分别接驱动器的 dir,cp, Vcc 接驱动器的公共端。

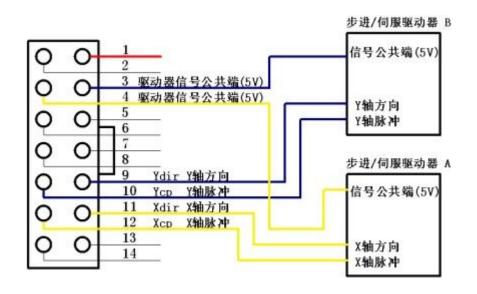
差分驱动器接法: dir,cp 分别接驱动器的 dir-,cp-, Vcc 接 dir+,cp+。

5.3 系统电气联接说明

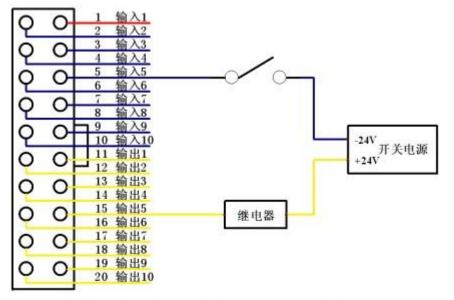
为系统内部提供的 DC5V, DC24V 电源, 不能作为其它电器的供电。

24V 电源不能与大地、机壳等短接, 当距离较大时应使用较粗的电气联接线。

所有保护输入信号:如限位、急停等,均采用常闭联接方式,其它可根据系统的要求、参数的设置等情况选定。


从本系统到驱动器的连接线必须使用屏蔽线,降低干扰。

电气柜中配线,应注意强电、弱电分离,避免强电弱电混在一起,且尽量减少交差,注意电磁干扰 对系统的影响。


系统接地线应采用较粗的铜线,一般应大于4平方毫米。并尽量缩短与接地端的距离。

5.4 系统电气接线图

电机信号接口(14P)

输入输出接口(20P)

输入输出所用24V电源应与系统24V共用同一开关电源

6. 常见故障及排除

6.1 手动时无运动

可能是此方向有限位,或急停按钮按下。 电子齿轮的分子为0。或电子齿轮分母为0 伺服驱动器或步进驱动器报警。

控制系统与驱动器间信号线联接有误。

系统到驱动器的信号线联接有误(可调换 Dir 与 Cp 信号线的联接)。

6.2 运动距离有误差

电子齿轮比不合适。更改伺服驱动器的电子齿轮或系统的电子齿轮。 速度超过8米/分(以1微米为当量)。 电机堵转或丢步(阻力过大、或电机性能差、或电机功率过小)。

6.3 输入/输出无效

输入/输出设置与所使用的口线不对应。 输入/输出设置的口号不存在或为 0。 输入/输出口硬件有故障(可调换到未用的口位上)。

24V 电源工作不正常

6.4 错误报警

标号错误: 待跳转的标号(不能为 0)不存在,在待跳到的程序行处(L)给定与其相同的标号。

6.5 系统功能声明

本说明书如有不正确、不详尽处,以系统软件功能为准。 控制功能改变(升级),恕不另行通知。

附录 1: 控制器使用厂家、或最终用户

1. 参数出厂值的设定

在设备调试到理想状态后(各系统参数均达理想状态),可将此参数设为出厂值。在"参数设置"中的"系统参数"功能下按空格键,再按8键,再按6键即将当前参数保存为"出厂值"

2. I/0 设置

出厂前应将 I/0 设置后的值进行记录,以备恢复

3. 参数设置进入密码

固定密码: 168888

当取消或设置此密码时,在主画面下按"PgUp"键后再按"空格"键,再按

- 1.进入编辑是否需要密码
- 2.程序保存是否需要密码
- 3.程序删除是否需要密码
- 4.进入参数是否需要密码
- 5. 讲入系统参数是否需要密码
- 6.进入 IO 设置是否需要密码
- 7.进入手动是否需要密码