伺服電動機機電時間常數的測試方法
毛鼎品 莫會成(西安微電機研究所)
1引 言
機電時間常數是伺服電動機的一個重要性能指標。理論上它是由電氣時間常數和機械時間常數所組成,但不是簡單的線性疊加關系,因而要從機電時間常數的測量值中,將兩者分開是很困難的。機電時間常數的測試方法很多,“電勢法”和“電流法”是普遍采用的方法。實踐表明,用這兩種方法測得的數據并不完全一致。通常在有關標準或產品技術條件中都規定,用“電勢法”或“電流法”測試時間常數時,電動機應處于空載起動過程,但實際使用中,有時需要在某種負載下測試.其結果又會怎樣呢?還有,實測的起動過程曲線有時出現振蕩現象,這種振蕩現象是在什么情況下發生,此時“電勢法和“電流法”兩種結果又有什么關系?本文通過“數值計算”求解伺服電動機機電時間常數測試過程中的微分方程,并進行討論。
2測試方法和原理
有關標準或產品技術條件規定,伺服電動機機電時間常數測試方法有電勢法和電流法。
2.1電勢法
電動機同軸帶測速發電機,由測速發電機所增加的負裁應盡量小。試驗時電動機空載,先加以額定勵磁電壓,然后將額定電樞電壓階躍式加入電樞兩端,用示波器攝取測速發電機電勢隨轉速變化的波形,從波形圖上求取對應電樞轉速從零加速到穩定空載轉速
2.2電流法
在電動機的電樞回路中串入合適的采樣電阻R(也可用量程合適的電流表內阻代替),采樣電阻對電樞回路電阻的影響應盡量小。試驗時電動機空載,先加以額定勵磁電壓,然后將額定電樞電壓階躍式加入串有采樣電阻的電樞回路兩端,用示波器攝取采樣電阻兩端電壓降(正比于電樞電流)隨轉速變化的波形,從波形圖上求取對應電樞轉速從零加速到穩定空載轉速的百分之63. 2所需的時間。典型的測試衄線如圖2所示。
3數值計算
3.1數學模型
無論是“電勢法”或“電流法”,當不考慮鐵耗電阻時,在機電時間常數的測試過程中,都滿足以下兩個方程,即
電壓平衡方程式
轉矩平衡方程式
Kt和Kt分別為電動機的反電勢常數和力矩常數。在MlvS單位制中將式(3)、(1)和(5)代入式(I)和(2).則有
將以上兩式進行整理,并寫成矩陣形式
3.2計算實例
根據式(8)數學模型,用露一Ⅳ法對某直流伺服電動機的起動過程進行數值計算。
電機參數
3.2.1計算類別
曲線并由所得曲線求取相應的機電時間常數T(電勢法)和r(電流法)。并由所得曲線求取相應的機電時間常數時起動過程的曲線,并由所得曲線求取相應的機電時間常數T和Z。
3.2.2計算結果
根據三種計算類別計算所得數據繪制出曲線。由這些曲線得到的,電勢法、電流法和電樞電流上升到景大值的時間如附表所示
圖3是根據計算類別(j所得數據繪制的曲線,由圖可見.起動過程出現了振蕩。圖1是表示假設沒有電感時的起動過程曲線,可見電勢和電流隨時間變化的規律正好相反。計算類別A和B都是一般情況,曲線形狀都與圖l或圖2-樣。
從起動過程的物理概念來理解,電勢法測得的機電時間常數Tme是比較準確的.因為電勢正比于轉速,電勢從零上升到穩定值的百分之3.2所需的時間,與轉速從零上升到穩定轉速的百分之63. 2所需的時間完全對應。而電流法的機電時間常數7V。的取值,相當于電機是在電流達到****值時(對應時間2V)才開始旋轉并加速,從而電流才隨著廈電勢的升高而相應降低。實際上在電流達到****值以前的某一時刻.只要由其產生的電磁力矩大于電機軸上的負載力矩和電機的阻力矩,則電機就開始旋轉并加速,從而電流是在繞組電感和反電勢的同時作用下上升,電流達****值。此后電流隨著反電勢的不斷升高而降低,直到反電勢穩定.電流達穩定值。因此,與電勢法的T相比.電流法的T延長了這段時間.假如電機繞組沒有電感,則繞組一通電電流就立刻上升到****值,電機也就立刻旋轉并加速,這樣兩種方法所得結果將完全一致,但測得的是機械時間常數T。
4結論
根據數值計算結果及分析.可以得出以下初步結論。
a.由電勢法和電流法所得的機電時間常數是不一致的,其差別是由于電感的影響,并有近似關系式
b. 當負載不變時,負載轉矩Mi對機電時問常數幾乎沒有影響(不考慮因負載轉矩引起的溫度變化的影響;
c.當J不變時.Mt對電流的****值有影響,M越大值也越大。但對達到該電流值的時間幾乎沒有影響;
d.J不同.Z也不同
e 當ML不變時.J r對值的大小有影響.t越大值也越大.達到該電流值的時間也略增大;
f.當機械時間常數T小于4倍電氣時間常數Te.
g.電磁力矩Mem隨時間的變化規律與電流如隨時間的變化規律完全一致;
h.用電勢法和電流法測試電機機電時間常數時,只有在電樞回路電感為零時(事實上不可能).
兩種結果才完全一致,而在一般有電感的情況下,兩者總存在差別,而且電勢法較為準確。但當考慮電感影響后,電流法在工程上仍可采用.其優點是簡單方便。
|